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it into the first one. (hi is the identi ty operator.) The 
groupoid T is therefore the set of  operat ions which 
superposes each substructure onto itself (diagonal  
terms) or onto the other substructure (off-diagonal 
terms). The superspace group G is called the kernel 
and H the hull of  the superspace groupoid.  The 
structure analysis can be made  within the framework 
of  the present theory if  we use the operators in G 
and H. 

It is possible to classify the structure into two 
groups of  substructures, one of  which consists of  the 
second substructure of  Hg and part of  the first sub- 
structure and the other consists of  the third substruc- 
ture of  Hg and the remaining  part of  the first substruc- 
ture. The two groups are t ransformed into each other 
by the glide plane normal  to a * l - b  .1 which trans- 
forms a *~ into b *l. In the first substructure, each part 
has a tetragonal lattice but with monocl in ic  symmetry.  
These two parts have no common  atoms because they 
are related by the glide plane. We can apply the 
groupoid  theory to these two groups by recognizing 
the groups as the substructures in the above dis- 
cussion. The two structure groups have a five- 
d imens iona l  superspace group with monocl in ic  sym- 
metry. When the structure factor of  the first group 
Fo(h e) and h2 = {R[r} t ransforming the first part into 
the second one are considered,  the structure factor 
of  the total structure is given by F (h  e )=  
F0(he )+exp  (27rher)Fo(R-~h~). In the present case, 
h2 is the glide plane so that R-1 = R. Then the diffrac- 
tion pattern shows the rotational symmetry due to 
h2" F ( R h e ) = e x p ( 2 r r R h e r ) F ( h  e) because {Rlr} 2= 
{Elr+Rr}={E]O}  and therefore exp(27rRh~r)  = 
exp (-27rh~r),  where E is the identity operator. This 
ensures or thorhombic  diffraction symmetry.  Thus, 

instead of applying the superspace group for the 
merged Hg substructure, we can use the superspace 
groupoid as given in a previous paper  (Yamamoto  & 
lshihara ,  1988). This shows the appl icabi l i ty  of  the 
present theory to all cases. 

The author thanks Dr K. Kato and Dr M. Onoda,  
Nat ional  Institute for Research in Inorganic 
Materials,  for valuable discussions and for supplying 
test data in the development  of the new version of 
REMOS.  
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Abstract  

A procedure for the quanti tat ive evaluation of  struc- 
tural relat ionships among crystal structures is intro- 
duced based on the concept of  mappings  represented 

by pairs of  matrices (A, S). Lattice relat ionships,  sym- 
metry relat ionships,  local atomic deviations and map- 
ping failures are dis t inguished and for each type of 
relat ionship,  a figure of merit  is constructed. The 
different figures are combined  in a figure of  misfit 
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484 QUANTITATIVE RELATIONS AMONG CRYSTAL STRUCTURES 

that might be used for the characterization of the 
structural relation. Some examples are discussed in 
detail. 

Introduction 

The use of relations among crystal structures is very 
common in the process of crystal structure descrip- 
tion: in many cases a new structure is discussed by 
comparison with a well known structure. This com- 
parison is usually expressed in words, for example, 
'particles A form a distorted cubic close sphere pack- 
ing' or 'half  of the octahedral voids in this packing 
are occupied by particles B'. 

Many classification concepts that try to arrange the 
known structures in a systematic way use the relations 
among the structures as a fundamental principle. 
Differences in the judgement of relationships lead, 
however, to different or even contradictory schemes. 
For example, the definition of families of structures 
in the textbook of Megaw (1973, p. 282ff) is restricted 
to 'one-to-one correspondence between all their 
atoms, and between all their interatomic bonds'  (this 
is weakened later) and does not consider the sym- 
metry relations. On the other hand, it was shown by 
B~irnighausen (1975) that all the examples given in 
the textbook show, in addition, well defined relations 
with respect to symmetry. Quite another idea of struc- 
tural families was developed by Hellner (1966). Start- 
ing from very simple point configurations (such a s / ,  
P or F lattices), the decomposition of the basic 
configuration under the influence of subgroup rela- 
tions leads to structural relations that are governed 
by symmetry and certain topological properties of the 
connection patterns. Thus, structures additional to 
those with one-to-one correspondences between the 
atoms are related to each other. Many other concepts 
may be found in the literature. One reason for the 
differences in the judgement of relationships may 
arise from the fact that there is a lack of quantitative 
arguments. 

A pair of crystal structures may be related in 
different ways: 

(i) they may be related to each other by corres- 
pondence or similarities between their translation 
lattices; 

(ii) they may be related by symmetry, for example, 
they may have the same group or one space group is 
a subgroup of the other or there is a common sub- 
group of importance for both of them; 

(iii) they may be related to each other by corre- 
spondence between their interatomic bonds or they 
may have the same or similar coordination schemes. 

In this paper, a procedure is proposed that allows 
not only handling of different aspects of relationships 
in a valid and unique way but also a quantitative 
evaluation of the relationship. The procedure is based 
on the concept of mapping. 

Structural descriptors 

Before entering into a detailed discussion, it is con- 
venient to summarize the different possibilities for 
the description of a crystal structure. 

(i) A crystal structure may be described by the list 
of its formal  parameters, i.e. the space group, the 
lattice parameters, the Wyckoff positions and the 
atomic parameters if necessary. This description is 
complete and allows the construction of the structure 
(using, for example, a computer). The disadvantage 
of this parameter list is evident: in most cases it does 
not give any idea about the arrangement of the atoms. 
Moreover, this description is not unique since 
different lists of formal parameters are possible for 
the same structure (see, for example, Parth6 & Gelato, 
1984, 1985). This is the reason for several proposals 
of standardized formal descriptions (Lima-de-Faria, 
Hellner, Liebau, Makovicky & Parth6, 1990). 

(ii) To overcome this disadvantage, it is very com- 
mon to introduce a local description to illustrate the 
type of neighbourhoods for single atoms. This idea 
leads to the concept of coordination numbers and 
polyhedra. Strictly, coordinating neighbours are only 
those closest to the central atom. In many cases, 
however, it is difficult to decide whether a neighbour 
belongs to the coordination sphere of a certain atom 
or not. Different methods have been introduced to 
fix the coordination number, e.g. the principle of the 
largest gap (Brunner & Schwarzenbach, 1971). Since 
even this procedure leads to unsatisfying results in 
some cases, it may be supplemented by additional 
procedures, such as the construction of Dirichlet 
domains, i.e. the domain of influence, or by the dis- 
cussion of equipotential faces etc. 

(iii) Since in most cases the description of local 
properties is not sufficient to fix the three-dimensional 
structure, global descriptors are added. These descrip- 
tors could be, for example, a Laves symbol or a Laves 
matrix (Laves, 1930), the use of the concept of 
n-connected nets (Wells, 1954, 1955, 1956), the refer- 
ence to an aristotype (Megaw, 1973, pp. 216, 282) etc. 
It should be emphasized that it is convenient to desig- 
nate aristotypes by symmetry-related symbols derived 
from the nomenclature of lattice complexes (Fischer, 
Burzlaff, Hellner & Donnay, 1973), as discussed 
below. 

The combined use of local and global descriptors 
allows at least some illustrative representation of a 
crystal structure. 

The mapping procedure 

A (derived) structure 2 is related to a (basic) structure 
1 if a pair of matrices (A, S) map from structure 1 to 
structure 2; A is a non-singular 3 × 3 matrix, S is a 
(3 x 1) column matrix. M = (A, S) is called the map- 
ping of the relationship. The relationship is regarded 
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as complete only if the mapping takes into account 
the following three aspects. 

(i) Mapping of  the basis 

If Bb = (b~b, b2b, b3b) represents the basis of the 
basic structure and Bd = (b~d, b2d, h3d) represents the 
basis of the derived structure, the following relation 
holds: 

i f B b = B d A ,  t h e n B b = c B b  
(1) 

and if Bd = BbA -l,  then IId= CBd, 

i.e. the image Bb of Bd should be similar or very close 
to Bb and the image Bd of Bb should be similar or 
very close to Bd; c is a common scale factor. This 
relation can be expressed by the aid of the metric 
tensor G. Making use of the equations 

G = (g,k) = (b,bk) : BTB, (2) 

the relations 

G b = A r G d  A and (~d=(A-~)rGbA -1 (3) 

hold. For the metric tensors and their images, the 
relations 

Gb ~- C2Gb and C2Gd ~-- Gd (4) 

are valid. 

(ii) Mapping of symmetry operations 

A symmetry operation of the basic structure 
(Rb, Tb) can be mapped into an operation (Rd,'l 'd) 
described in the basis system of the derived structure 

([Id, 'Fd)=(A,S)(Rb,  T b + L ) ( A , S )  -~ (5) 

or, in detail, 

Rd =ARbA -I, (5a) 

T d = A ( T b + L ) + ( E - R d ) S .  (5b) 

The column matrix S contains the fractional com- 
ponents of the shift vector from the origin of the 
derived unit cell to the origin of the basic unit cell 
described in the basis of the derived structure. L 
contains the (integral) components of those lattice 
points of the basic structure that lie inside the unit 
cell of the derived structure. E is the unit matrix. 

Two different possibilities may occur. 
(a)  The set {(Rd, Td)} is contained completely in 

the set {(Rd, Td)}, i.e. the space group of the derived 
structure is a subgroup of the space group of the 
basic structure; the symmetry relationship is a 
'B~irnighausen' relationship. This situation is called 
a symmetry relationship of type I. 

(b) The set {(Rd, Td) } and the set {(Rd,'Fd)} have 
only a common subgroup. This situation is called a 
symmetry relationship of type II. 

(iii) Mapping of  atomic positions 

The same mapping M used for the generation of 
the images of the basis and the symmetry operations 
must be used for the mapping of the atomic positions 
X. The equation 

Xa : A(Xb + L ) + S  (6) 

produces images of all atoms of the basic structure, 
and the relationship can only be accepted if Xd and 
Xd coincide or are very close together, where Xa 
designates the atomic positions in the derived struc- 
ture. Inverting the mapping direction, images Xb can 
be derived for all atoms of the derived structure with 
coordinates Xd, 

Xb = A-'(Xd - S ) - L .  (7) 

Quantitative evaluation of a relationship 

Following the different aspects of the concept of 
mapping, four types of relations are distinguished, 
namely deviations between the lattices, local atomic 
displacements, mapping errors and symmetry rela- 
tions of type I or II. For the first three types, figures 
of merit will be introduced and used for the com- 
parison of different pairs of structures; they can be 
combined to a total figure of misfit. 

Deviations of the lattice 

Since the determinant of the metric tensor equals 
the square of the volume of the unit cell, it is reason- 
able to determine the scale factor in (4) [defined in 
(1)] such that the volume of the image unit cell of 
the basic structure equals the volume of the unit cell 
of the derived structure. After this, deviations and 
distortions can be discussed using metric parameters. 
As linear deviations of the lengths of the basis vectors 
and /o r  distortions with respect to the angles between 
them may occur, it is not convenient to compare the 
conventional metric parameters. For the sake of 
homogeneity, Delaunay parameters (Delaunay, 1933) 
are introduced. The Delaunay base consists of the 
four vectors 

bl, b2, b3, b4 with b4 = -b l  - b 2 - b 3 .  (8) 

The scalar products among them are called the 
Delaunay parameters sl2, sl3, s14, s23, s24, S34. They 
contain the same information as the elements of the 
metric tensor: 

Sl2 = gl2; Sl4 = --glt -- gl2-- gl3; 

S13 = g13; S24 = - g 1 2 -  g22- g23; (9) 

s23 = g23; s34 = -g13 - g23 - g33. 

Angular distortions and linear deviations will be 
taken into account simultaneously by the expression 

Aov-- [E I(Is,kl- c-=ls,kl)l]/E Is, l, (10) 
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Table 1. List of structures and aristotypes 

Space group Lattice 
Structure and origin parameters 

"cP" P m 3 m  a = 3 .000 

m 3 m  

"cl" lm3m a = 4 .000 

m3m 
"cF" Fm3m a = 4 .000  

m3m 
"hE" P63._/mmc a = 3 .000 

3 m  c = 4 .899 
'Halogen' Abma a = 8 .936 

2 / m  b = 6 .710 

c = 4 . 5 7 7  
"cF; ~ ½ ~ cF" Fm3m a = 6 .000 

m3m 
"hE; Pl t 2' P63./mmc a = 4 .000  

3 m  c = 6 . 5 3 2  
As  R3m a = 3 .7598 

3 m  c = 10.5475 

Se P3121 a = 4 .3662  

2[~ ~OL x 3~ c = 4 .9536  
a - F e  Im3m a = 2 .8665 

m3m 
C u  Fm3m a = 3 .6148  

m3m 
M g  P63/mmc a = 3 .2089  

3 m  c = 5.2101 
CI 2 Abma a = 8.26 

2 / m  b = 6 .24 
c = 4.48 

Br2 Abma a = 8.765 
2 / m  b = 6 .752 

c=4.564 
12 Abma a = 9 .784 

2/m b = 7 .136 
c = 4 .686 

NiAs P63/mmc a = 3 .169 
3 m  c = 5 .034 

M n P  Pbnm a = 5.917 

o n  112~ b = 5.25 
c = 3 . 1 7  

TiO2 P42/mnm a = 4 .5845  
rutile mmm c = 2 .9533 

T iO2  I41_/amd a = 3 .7842  
anatase 4 m 2  c = 9 .5146  

AI203  R3c a = 4 .574  
corundum 3 m  c = 12.99 

0 

1 

0.1098 

0 .2254  

0 

0 

I 
3 

0.1021 

0 .110 

Coordinates 
y z Reference 

0 0 Aristotype 

0 0 Aristotype 

0 0 Aristotype 

~ Aristotype 

0 0 .1388  Aristotype 

0 0 Aristotype 
I 1 
2 2 

0 0 Afistotype 

0 0.2271 Z Appl. Cryst. (1969) ,  
2, 3 0 - 3 6  

0 ~ Z Appl. Phys. (1972) ,  
43,  1 4 3 2 - 1 4 3 6  

0 0 Z. Angew. Phys. (1967) ,  

23,  2 4 5 - 2 4 9  
0 0 Acta Cryst.(1969), 

A25,  6 7 6 - 6 8 2  
2 1 a J. Phys. Chem. Solids (1966) ,  

27,  5 4 7 - 5 6 5  
0 0 .1222  Struct. Rep.(1979), 

4 5 A ,  385 
Acta Cryst.(1965), 

18, 5 6 8 - 5 6 9  
0 0 .140 Acta Cryst.(1959), 

12, 3 4 - 3 5  

0 .1174  0 0 .1543 Acta Cryst.(1967), 
23, 90 -91  

0 0 0 Can. Z Chem.(1957), 
3 ~ ~ 35,  1 2 0 5 - 1 2 1 5  

0 .1965  0 .0049  ~ Acta Chem. Scand.(1962), 
0 .5686  0 .1878  a 16, 2 8 7 - 2 9 2  

0 0 0 Acta Cryst. (1975) ,  
0 .3049  0 .3049  0 B31,  1 9 8 1 - 1 9 8 2  

0 0 0 Z. Kristallogr. (1972), 
0 0 0.2081 136, 2 7 3 - 2 8 1  

0 0 0 .3523  Acta Cryst. (1982) ,  
0 .3064  0 4 t A38 ,  7 3 3 - 7 3 9  

where the sum is taken over all Delaunay parameters 
of the derived structure, fdev is called the figure of 
deviations. 

structure; di . . . .  designates the shortest coordination 
distance for the ith atom. Only the terms with 
d~ <-0.5dicoor are included in the sum. 

Local displacements 

In general, small deviations between the site of an 
atom of the derived structure and the related image 
of the basic structure will occur; these displacements 
might change from atom to atom, so they are local 
properties. They can be measured by the distance 
between the atom and its image, 

d =lxd-x l. (11) 
The effect of all local displacements will be taken 
into account by 

f d i s  = ( E  d i ) / ( E  dicoor). ( 1 2 )  

fdis is called the figure of displacement. The sum 
includes all atoms in the unit cell of the derived 

Mapping errors 

Even in strongly related structures, the derived 
structure may contain interstitial or cavity atoms com- 
pared with the basic structure. Of course, the value 
indicating closeness of relationship should be lowered 
in these cases. For this purpose, a figure of failures, 
frail, is introduced, 

frai ,=(~,nd+~ hd)/(Na+IQd). (13) 

Nd is the number of atoms in the unit cell of the 
derived structure, /Vd is the number of image atoms 
of the basic structure in the unit cell of the derived 
structure. The sums include all atoms in this cell; 
nd = 1 if the value for the related d in (11) exceeds 
dcoor/2, nd = 0 otherwise. The first sum takes care of 
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Table 2. Structural  relations 

Pairs o f  Transformation matrices 
structures A S 

As ~ ~ - ~  0 
1 -~ ~ -~ o 
1 1 I 1 

"cP" g 6 ~ 4 

Se 2 t 1 I 3 --3 - ~  - 3  
I I "~ 

"cP' 3 3 3 0 

NiAs 1 0 0 0 
0 1 0 0 

"hE;  Pll2" 0 0 1 0 

I _ ~  0 l MnP - 2  4 
0 0 1 

"hE;  P,,2" ~ ~ 0 14 

A I 2 0  ~ ~ 2 -3  0 0 
2 I 
3 - 3  0 0 

" h E ;  P i t 2 "  0 0 ~ 0 

TiO2 ruffle - ~ ~ 0 0 
0 0 1 

~ 0 0 "hE;  Pl12" 2 2 

TiO2 anatase ! 0 0 0 
0 I 0 0 

" cF;  ~ ~ 22 cF" 0 0 ~ 0 

CI2-'halogen" 1 0 0 0 

Br2-'halogen' 0 1 0 0 

12-'halogen' 0 0 1 0 

'Halogen" ~ 0 0 

0 1 0 0 
"cF" 0 0 1 t4 

• c F" ~ t ~_ 0 0 
I 1 

- 2  2 0 0 
"c l '  0 0 1 0 

1 I "hE" - 2  2 1 t 
1 I 
2 - 2  1 - ~  

"cl" ~ i 2 o 

Symmetry 
type, 
index fdev 

(1) 
0.154 

8 

(I) 
0.076 

24 

(l) 
0.179 

1 

(i) 
0.062 

6 

(I) 
0.043 

6 

(II)  

0.069 

6 

(I) 

0.239 

12 

( I ) 0.043 

0.023 

1 0.047 

(i) 
0.347 

24 

(II) 

0.297 

3 

(11) 

0.142 
12 

Figures o f  relation 

fdis f~ai, 

0.074 0.000 

f i n i s  

0.216 

0.153 0.000 0.218 

0.000 0.000 0.179 

0.114 0.000 0.169 

0.068 0.091 0.184 

0.068 0.143 0.256 

0.076 0.143 0.398 

0.037 0.000 0.079 

0.002 0.000 0.025 

0.040 0.000 0.085 

0.2 i 0 0.000 0.484 

0.000 0.000 0.297 

0. I ! 5 0.000 0.240 

missing atoms. Interstitial atoms are taken into 
account by the second sum; they are identified by 
reverse mapping. 

The three derived figures may be combined in a 
way similar to obtaining a global figure of merit in 
direct-methods procedures, 

fm~.~ = 1--(1--fde,.)(1--fdis)(1--frai,). ( 1 4 )  

fm~.~ is called the figure of misfit. All these figures range 
between 0 and 1; a relationship is stronger if these 
figures are closer to 0. Some applications will be 
discussed below. 

Aristotypes 

Before discussing examples, it is necessary to examine 
more closely the term 'aristotype'. Two kinds of 
aristotypes may be distinguished: 

(i) In agreement with Megaw (1973), an aristotype 
may be defined as 'the simplest and most symmetric 
member of any family'. The family consists of all 
structures that are related to the aristotype in some 

defined sense. This definition is also in good agree- 
ment with the ideas of Ewald & Hermann (1931) 
concerning an ideal structure ( ' ldeal fa l l ' ) .  In addition 
to maximal simplicitly and highest symmetry, 
geometrical parameters have to be fixed if they are 
free (e.g. axial ratios in non-cubic structures). To 
avoid confusion with actual structures, aristotypes of 
this kind will be designated by symbols derived from 
the nomenclature of lattice complexes (Fischer et al., 
1973) and supplementary geometrical parameters. 

(ii) It is not possible to define an aristotype as 
introduced above for all families of structures. For 
example, the structures of halogens C12, Br2, 12 form 
a family (Wells, 1975), however, there is no 'simplest 
and most symmetric' representative. Consequently, 
no ideal structure is described in the Strukturbericht  
by Hermann, Lohrmann & Philipp (1937). In these 
cases, it is proposed that the aristotype be fixed by 
the average of the standardized free parameters and 
that the aristotype be designated by a trivial name, 
e.g. 'halogen' in the case above. 
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Examples 

The examples are selected in such a way that struc- 
tures with strong relationships and structures with 
poor relationships are included for comparison. 
Moreover, they are well known to most crystallogra- 
phers, to give an impression of the validity of the 
procedure. The structural data for all structures used 
are presented in Table 1. The table contains the 
designation of the structure, the space group and 
information on the origin selected, the lattice param- 
eters, the coordinates and a reference. It starts with 
the description of seven aristotypes. The symbols "cP', 
"cl', 'cF" designate the three cubic Bravais lattices; 
' h E '  designates the hexagonal close packing with the 
axial ratio c /a  = (24/9) ~/2= 1.633. 'Halogen" means 
a structure that results from the averages of the param- 
eters of the halogen structures C12, Br2, 12. If voids 
in a basic arrangement (e.g. in "cF' or ' hE '  etc.) are 
occupied by additional atoms, their distribution is 
indicated by the symbol following the semicolon: thus 
'cF; ½ ½ ~cF" designates a cubic close packing with 
occupation of all octahedral voids, 'hE; P~2' means 
a hexagonal close packing with occupation of all 
octahedral voids. The indices '112' indicate a transfor- 
mation: the translation vectors a', b', c' of the P lattice 
represented by the octahedral voids must be multi- 
plied by the indices to match the translations of the 
structural unit cell, i.e. la '  = a, lb '  = b, 2 (  = c. 

(a) 

\_) 

(b) 

z 

J- . ,  
x 

i x 

(c) 

The results of the quantitative evaluation of the 
relationships according to the procedure described 
above are given in Table 2. The first column contains 
the symbol of the structure and its aristotype. The 
next two columns give the mapping (A, S); the follow- 
ing column contains information on the symmetry 
type and the index of the common subgroup. The last 
column contains the different figures of merit. 

(i) It is well known that the structures of the ele- 
ments As and Se are strongly related to a cubic P 
lattice (see Fig. 1). The quantitative analysis reveals 
that the deviations from "cP" are of the same magni- 
tude, but the relative importance of the lattice devi- 
ations and the local displacements of the atoms is 
widely different in the two structures. 

(ii) The next comparison concerns structures 
related to the NiAs type (see Figs. 2 and 3). The 
detailed analysis shows that the deviations of the 
actual NiAs structure from the aristotype 'hE; Pli2' 
are significant because of the lattice deviations; the 
MnP structure has smaller overall deviations in spite 

r - /  Y ~,..Jl 
~' .~//i N 

(a) 

(b) 

I 

1 

y 

7£__ %--~ 

J-- ,  , ...V" 

(c) 

Fig. 1. Projections of the structures of (a) As, (b) "cP', (c) Se in Fig. 2. Projections of the structures of (a) MnP, (b) 'hE; PII2' in 
hexagonal setting, orthorhombic setting, (c) TiO2 ruffle. 



H. BURZLAFF AND W. ROTHAMMEL 489 

of remarkably large local displacements (see Fig. 
2a, b). Even the corundum structure shows a similar 
figure of misfit although only two-thirds of the octa- 
hedral voids are occupied as indicated by the figure 
of failures. Moreover, the analysis shows that the 
description for ruffle given by Wells (1975) is justified: 
the main part of the relatively large figure of misfit 
is due to the half-occupation of the octahedral voids 
(see Fig. 2c). 

(iii) The second phase of TiO2, anatase (see Fig. 
4), may be regarded as being related to the NaCI 

structure as already described by Ewald & Hermann 
(1931). In this case, however, the lattice deviations 
are substantial and lead, together with the figure of 
failures, to a large figure of misfit. 

(iv) The next example refers to three structures 
that without any doubt belong to the same aristotype, 
namely the structures of C12, Br2, I2. Consequently, 
all figures of relation are close to zero. The combined 
figure of misfit, however, increases to 0.085 in the 
case of I2. 

(v) Although the halogen stucture is clearly a layer 
structure, it may be regarded as weakly related to a 
cubic close packing elongated along b with tilted unit 

_~/  ~ ( ~ ~  ~ ~ , y . _ ~  cells in the direction of a (see Fig. 5). The quantitative 

:: (2 q:4 L > 

(b) 

/ - - ,  t ~ ,  ,L, 
x x 

(b) (c) 

Fig. 3. Projections of the structures of (a) 'hE; P~ ~2' in hexagonal 
setting, (b) NiAs and (c) A1203 corundum; for ease of com- 
parison (c) shows only parts of the structure. 

- j_ ,  " j_ ,  
Y 

(a) (b) 

Fig. 4. Projections of the structures of (a) 'cF; ~ t  ~ c F "  and 
(b) TiO2 anatase. 

z 

(c) (d) 

Fig. 5. Projections of the structure and Dirichlet domain (a, b) 
for the cubic close packing 'cF' and (c, d) for the aristotype 
'halogen'. 

, L? ii ( 3  I] , :  i '  i l  
, ~  .... ~ -=:=-~_~ 

)- )_ )_ x x x 

l l z 

(a) (b) (c) 

Fig. 6. Projections of (a) "cF' in pseudo-/setting, (b) "cl" and (c) 
the hexagonal close packing 'hE' also in pseudo-/ setting. It 
should be recognized that in (c) the pseudo-/ arrangements 
occur in two different orientations. 
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evaluation results in a large figure of misfit mostly 
due to a large figure of deviation stemming from the 
elongation in the b direction. However, the Dirichlet 
domains support the relation: the rhombi parallel to 
b are changed to hexagons as a consequence of the 
elongation in the b direction, otherwise there are only 
small changes. 

(vi) The last example refers to the relations among 
the basic arrangements "cF', 'cl' ,  "hE', the cubic I 
lattice may be regarded as being between hexagonal 
close packing and cubic close packing (see Fig. 6). 
The quantitative evaluation shows that the relation 
between 'hE' and 'cl '  is stronger than between 'cF" 
and " cl'. 
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Abstract Introduction 

Rocking curves of the Si(222) reflection have been 
measured with tr-polarized incident radiation in the 
Aufhellung region of a Renninger scan near an n- 
beam interaction point. Even with an angular reso- 
lution A0 = +8", much larger than the intrinsic width 
of this weak reflection, these curves show a structure 
with two or more peaks, deviating markedly from 
that of the standard shape of a (convoluted) weak 
reflection. Details of the structure vary with the 
azimuthal angular distance from the interaction point, 
with the reciprocal-lattice vectors involved in the 
interaction, and with wavelength. Several typical 
examples of rocking curves obtained under different 
experimental conditions are presented and the prob- 
able origin and consequences of this structure are 
discussed. 

In the reflecting plane of a two-beam reflection, the 
intensity is governed by the deviation from the Bragg 
angle A0 and by the setting of the azimuthal angle 
q~. Rocking curves are obtained by varying A0 at 
constant ~ and are usually independent of ,p, for 
far enough from the n-beam interaction point. On 
the other hand, a typical Renninger scan (Renninger, 
1937) records the intensity variation of this reflection, 
integrated over A0, as a function of azimuthal angle 
~. Such variations occur in the immediate neighbour- 
hood of multiple interaction points, often giving rise 
to the well known asymmetry which can be used for 
phase determination (Chang, 1987). The conven- 
tional interpretation of the Renninger-scan data 
assumes that the integration over A0 is over a standard 
two-beam line shape. So far, however, experimental 
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